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A Method for Computing Bessel Function Integrals 

M. PUOSKARI 
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A method for numerical calculation of integrals containing Bessel functions of integer or 
integer plus one-half order is described. The calculation involves first a one-dimensional 
Fourier sine or cosine transform followed by evaluation of the coeflkient of the Chebyahev 
series of the Fourier-transformed function in the case of the Bessel function and evaluation of 
the Legendre expansion coeffuzient in the case of the spherical Bessel function. A 
generalkation of the method for the computation of an integral involving the Bessel function 
of arbitrary real order v is presented as well. (C. 1948 Academic Press, Inc. 

1. INTRODUCTION 

We consider the numerical computation of an integral 

(1) 

where J,(yx) is the Bessel function of the first kind and of order 11, and V, 4’ are 
arbitrary positive real numbers. Special cases of this integral are the Bessel trans- 
form (also called the Fourier-Bessel or the Hankel transform) when v is an integer 
and c= 1, ,u=O, and A=& 

(2) 

and the spherical Bessel transform when v is an integer plus one-half v = I+ 4 and 
IS = 2, ,LL = t and A = 4~r(n/2)“~, 

x’f(x)(yx-“‘.J,+ L:2(Jx) dx 

(3) 

where j,(x) is now the spherical Bessel function. 
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For the large values of 1% the integrands of (2) or (3) are rapidly oscillating 
functions and one must either divide the integral over infinite interval into a sum of 
integrals over finite intervals between the zeros of the the Bessel functions [l, 2] or 
use special methods. Several procedures have been described in the literature [3]; 
one can either approximate the function f(.u) by a truncated series of Chebyshev 
polynomials [4] so that the resulting integrals (so called modified moments of 
J,(s)) can be calculated exactly or one can expand it into Laguerre polynomials 
[5] whose Hankel transforms are known. Other approaches of interest are 
procedures which are based on the fast Fourier transform (FFT) algorithms: one 
can replace the argument J’ and the integration variable x by exponential variables 
and transform the Bessel integral into a correlation or a convolution integral which. 
can be evaluated by FFT [6,7] or by some other means [S]. Candel [9] has used 
the generating function expansion of the Bessel function to convert the integral (2) 
into two successive Fourier transforms which again can be calculated with ET. 
One can also use the projection slice theorem to compute the Hankel transform. 
from the one-dimensional fast Fourier transform of the projection of the function 
onto the real .u-axis [lo]. The spherical Bessel function integral (3) was computed 
by Sommer and Zabolitsky using an extended Fil.on’s integration formula [ P l]. 

In this paper we present a method where the integral (1) is transformed to a 
Fourier sine or cosine transform followed by the integration of the transformed 
function over the finite interval ( - y, y). The weight function of the latter integra.1 is 
the Chebyshev polynomial in the case of the Bessel integral and the Legendre 
polynomial in the case of the spherical Bessel integral. 

2. METHOD 

At first we calculate the Fourier sine transform if k = s - /l is odd or the Fourier 
cosine transform if k is even, where we have to choose 1’ so that k is an integer 

y( f) = 2 fox x”f(x) sin( tx) dx, if k = v - p is odd 

x”f(x, cos( tx) ds, if k = L’- ,ri is even. 

Substituting the inverse transforms 



336 M. PUOSKARI 

into (1) we obtain 

F,(yj=Aq y T(t) @,(y, I) dt 
71 ‘0 

(6) 

when the auxiliary function Qk( I:, t) is .detined by 

cok( y, t) = JoX x -pJZm+ ,+,(yx) sin(tx) d-x, where k = 2m + 1 is odd, 

(7) 
where k = 2m is even, 

and m is a natural number. These integrals can be calculated in closed form in 
terms of the Gegenbauer polynomials C;(x) [12], 

@k(Y, t) = 0, when t>J 

@k(.l),t)=(-l)nt(2y)p-1 k!r(p) 

x C;(t/y)( 1 - t2/y2)p- “‘[T(k + 2p)] -‘, when O<tty, (8) 

where m = (k - I)/2 if k is odd and nz = k/2 if k is even. 
The Bessel and the spherical Bessel transforms (2) and (3) are then expressed as 

special cases of (6) using the relations p = 0, k = v -p = n, lim, _ o I-(p) C;(x) = 
2T,(x)/k and p = +, k = V-Y = 1, C~~z(x) = Pk(x) [13], respectively; the final form of 
Eq. (2) (the Bessel integral) is then 

p (y)p)m “J n J 7 (t)(l - t2/y2)-1,‘2 T,(t/y) dt, 
J’ --.I 

while for Eq. (3) (the spherical Bessel integral) we obtain 

F,(~v) = (- “” 71 JI, f(t) P[(t/y) dt, 
J’ 

(9) 

(10) 

where T,, is the Chebyshev polynomial and PI is the Legendre polynomial. 
Linz [14] earlier derived the result of Eq. (9) for the Bessel function J,(x) by 

means of an Abel transform. In this case the integral (9 j is simply 

F~~o=2S,i(y~-t~)~“2[2~o~xf(x)cos(tx)dx]dt. (11) 

Also, Mook recently used the Abel transform to calculate the zeroth order Hankel 
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transform [15]. The change of the variable r = J cos 6 in Eq. (9) yields an equation 
which is quite similar to that used by Candel for the Bessel transform [9]? 

In addition, we note that the formulas related to Eqs. (9) and (10) are discussed 
in Section 3.2 of the survey of the Bessel function integrals by Piessens and 
Branders [3]. 

The calculation of the Bessel integrals is thus reduced to computation of the 
Chebyshev series coefficient or to computation of the Legendre expansion coef- 
ticient of the one-dimensional Fourier transform of f(x). The Fourier transforms 
can be calculated using either FFT [ 161 or the adaptive procedure of Piessens and 
Branders [l, 171 by introducing the upper limit cutoff X,,, in the infinite range 
integrals (4). We have used the latter approach since then one can choose the 
abscissae ofT(‘jr), whereas if FFT is used one has to interpolate to obtain the values 
off( t ) on the Chebyshev abscissae tj = cos(jnjIV) in Clenshaw-Curtis rules or if one 
uses adaptive integration routines to calculate integrals (9) and (10). In the present 
paper we have employed the NAG routine DOlANF [I81 which is based on the 
QUADPACK routine QAWF of Piessens et al. [I]. If the FFT is used the 
computation of the integral (9) can be made with the algorithm presented by 
Candel [9]. 

The Chebyshev coefficient can be calculated by the QUADPACK routine QAW§ 
or by the equivalent NAG routine DOlAPF while the Legendre coeffkient can be 
calculated using any integrator appropriate to smooth functions, e.g., either QNS 
or QAG of QUADPACK or either DOlAJF or DOlAHF of NAG. Another 
possibihty to calculate the Chebyshev series coefficients is to use the recurrence 
relations due to Clenshaw [19,20] and we have have used the NAG routine 
EOlAFF which is a modification of this algorithm. Piessens [21] has developed an 
algorithm (LEGSER, Algorithm 473 of CACM) for calcuiation of the Legendre 
expansion coefficient when the Chebyshev series coefficients of the function are 
known. 

3. NUMERICAL EXAMPLES 

We have tested our method using some commonly used integrals found in 
literature on the subject [4, 9, 22, 231. In the case of the Bessel transform we 
consider integrals 
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1 (y/b)” sin(n7c/2) 
=jg [l + (I_ y2/~y]n’ for 06 ~~db 

= & sin[n arc sin(b/l,)]> for ~3b. (14) 

The first integral was used by Piessens and Branders [4] to test their Bessel 
function integrator bases on the Chebyshev series expansion off(x) and the second 
one is a special case of the Weber-Schafheitlin integral and was used by Candel [9] 
in his FFT calculations. 

In the case of the spherical Bessel transform we compute the integral 

13= cx 
s 

xl+ 2e -“-‘j[( yx) dx 
0 

=2’+‘(/+ 1)!a~'l(a2+?i2j-('+2) (15) 

which was also used as a test integral by Talman [7,23] and by Sommer and 
Zabolitsky [ 111. 

The Fourier integrals are computed using the automatic Fourier integrator 
DOlANF of the NAG library with requested relative accuracy EPSREL (which was 
in our calculation typically lo-’ or 10-3). The integrals in (9) and (10) have been 
evaluated with two different methods: the Chebyshev coefficients or the Legendre 
series coefficients were computed either by a recurrence relation method of 
Clenshaw or by direct numerical integration methods. We calculated the Chebyshev 
coefficients using the NAG routine E02AFF. The same routine was employed to 
calculate the Chebyshev coefficients ofy((t) in (10) whereafter the Legendre series 
coefficients were computed by the routine LEGSER of Piessens [21]. The integrals 
(9) and (10) were also computed by the adaptive NAG routines DOlAPF and 
DOlAHF, respectively, with the requested relative accuracy of 10e4 for DOlAHF 
and lop3 for DOlAPF. 

The resume of the integration routines and input parameters which are actually 
needed in the present computation is presented in Table I. The input parameters in 
the adaptive integration method were the upper limit of the Fourier integral XMAX 
and the requested relative accuracy EPSREL in the NAG integration routines. In 
the recurrence relation method the additional input parameter was the number of 
the points N, where the Fourier integral T(t j has to be calculated, which is 
equivalent to the number of Chebyshev coefficients used in the NAG routine 
E02AFF. 

The computations were carried out on VAX11/730 and on IBM3083 using 
double precision arithmetic. The absolute errors of the numerical integration 
together with the exact values of the integrals are presented in Talbe II for the 
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TABLE I 

Combinations of NAG Routines Which Were Used in Evaluation of 

the Bessel Integrals I, and I2 and 
the Spherical Bessel Integral I, with the Recurrence Relation Method (Method 1 j or 

with the Adaptive Numerical Integration Method (Method 2) and 
the Input Parameters Which Are Needed in the Integration Routines 

Calculation of the 
Fourier integral (4) 

Cakulation of the 
Bessel integral (9 ) 

Calculation of the 
spherical Bessel integral (10) 

Input parameters 

Method 1 

DOlANF 

EOZAFF 

E02AFF + LEGSER 

EPSREL = 
the required relative accuracy 

XMAX = 
the upper limit 

of the Fourier integral 
N= 

the number of points 
where the Fourier integral 

is calculated 

Method 2 

DOlANF 

DOlAPF 

DOlAHF 

EPSREL = 
the required relative accuracy 

XMAX = 
the upper iimit 

of the Fourier integral 

TABLE II 

Integral I, (13) Calculated with XMAX = 30 

Method 1 Method 2 
n J Exact integral Absolute error Absolure error 

0 1 0.44721360 
10 0.98058068 x 10-l 

100 0.99980006x lo-’ 
IO00 0.99999800x lo-’ 

5 10 0.36310584x 10-i 
100 0.90466253 x10-l 

1000 0.99004786x lo-’ 
10 1 0.24037306x10-6 

10 0.13445692x 10-l 
100 0.81857797 x lo-* 

iOO0 0.98019673 x lo--’ 

0.954 x 10-i: 
0.541 x lO-‘l 
0.676 x 10-i’ 
0.673 x 10m6 

-0.729 x 10-lJ 
0.752 x lo-" 

-0.673x 1Om8 
-0.326 x 10-i? 

0.489 x lo-= 
6.676 x lo-” 

-0.673x 10-c 

-0.7900 IO-" 
-0.756x lo-" 

0.367x 10-j 
0.620x 10m3" 
0.923x 10-l' 

-0.406x IO-" 
-0.127~ 1O-z 

0.364 x LO-'* 
-0.291x lO-!e 

0.367 x LO-'" 
0.689x 10-X" 

a The requested tolerance in the DOlAPF integration routine was not achieved due to a bad locai 
integrand behavior. 

Nore. In the recurrence relation method (Method 1) EPSREL = lo-’ and N= 250 for y = 1; 10 and 
N= 2000 for y = 100, 1000, while in the adaptive numerical integration method (Method 2) 
EPSREL = 10d3 for y = 1, 10, and lo-’ for y = 100, 1000, and for all values of y in the case of II .= 13. 
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TABLE III 

Integral I, (15) Calculated with XMAX = 40 and a = 2 

Method 1 Method 2 
n Y Exact integral Absolute error Absolute error 

0 0.1 
1 
5 

10 
20 
50 

100 
5 0.1 

1 
5 

10 
20 
50 

100 

0.24815462 -0.104x lo-i6 -0.693 x 10-l’ 
0.16000000 0.201 x 1om’5 0.298 x 1O-‘5 
0.47562426 x 10 -3 0.285 x 10 -I6 0.144 x 10-r 
0.36982246 x 1O-3 0.210 x lo-l6 -0.764 x 10-10 
0.24507401 x 1O-4 -0.236 x 10-l’ 0.103 x IO&‘6 
0.63195690 x LO-” 0.221 x lo-l6 0.122 x lo-‘* 
0.39968019 x IO-’ 0.963 x 10-I’ 0.760 x 10 -I3 
0.55275395 x 1O-4 -0.608 x lo-l6 -0.311 x lo-‘6 
0.11796480 x lo+’ -0.501 x lo-‘0 -0.815 x lo-’ 
0.16695112 x 10-l -0.814x lo-‘* 0.420 x 1O-8 
0.70034026 x IO-” -0.196 x lo-‘* -0.262 x lo-‘* 
0.16788925 x 1O-6 -0.921 x lo-” 0.652 x 10-l’ 
0.46660804 x 10 -lo 0.324 x IO -I3 0.368 x lo-” 
0.91902364 x lo-l3 -0.466 x lo-“” 0.343 x lo-“” 

u Roundoff errors inthe DOlANF routine prevented the requested tolerance from being achieved. 

Note. In the recurrence relation method (Method 1) EPSREL = lo-” and N = 250 for y < 20 and 
N= 1000 for y = 50, lG0, while in the adaptive numerical integration method (Method 2) 
EPSREL = lo-~“. 

Bessel function integral I, (13) and in Table III for the spherical Bessel function 
integral I3 (15). In Fig. 1 the result for the integral I2 (14) are compared with the 
exact values of that integral. 

The results from the Clenshaw recurrence relation method are accurate to more 
than 10 decimal places for the smooth integrals (13) and (15) except for the very 
large values of 4’ in the Bessel integral (13), where the accuracy was about 68 
decimal places. The results from the direct integrations of the Chebyshev and the 
Legendre series coefficients are accurate to about 7-8 decimal places in most cases. 
The routine DOlAHF which is based on the optionally extended Gauss rules in an 
adaptive strategy due to Patterson [24] turned out to be faster than the routine 
DOIAJF in computation of the Legendre series coefficient (10). We found that the 
routine DOlAPF failed in calculation of the Chebyshev coefficient for large values 
of y. The accuracy of the integral I, (14) (which is about 5 decimal places) is limited 
by the upper limit cutoff of the Fourier integral XMAX = 150, where the value of 
the integrand is about the same order as the obtained absolute error of the 
calculation. The accuracy of the results of the integral I, were yet two decades 
poorer at y = b where the first derivative of the integral is discontinuous. In the 
scale of Fig. 1 our results for 1, are similar to Candel’s FFT calculations [9], except 
for the case of I= 7 when J’ z b = 0.2, where our estimates seem to be inferior to 
those of Candel. 
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, 
c 

INTEGRRL 12, L= 0 
0 

INTEGKfiL 12, L- 7 

-- 

FIG. 1. The Bessel integral I, (14) for b =0.2. The exact integrals are represented as solid lines. 
Estimates from numerical computations with the recurrence relation method (Method 1 j are represented 
by dots ( j. The input parameters are XMAX = 150. N = 500, and EPSREL = 10-k (A) I= 0; (Bj i= !; 
(CJ 1=-J. 

4. A GENERALIZATION 

Lastly we present a numerical calculation of the genera1 Bessel inkgraY (1). 
Expressing Gegenbauer polynomials in terms of the hypergeometric function 2.F: 
Cl337 
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we obtain from Eqs. (6) and (8) for the Bessel integral, 

x F 
2 I 

( 
k+& -k.p+i.l-t’J 3 3 2’2 ’ > 

where m = (k - 1)/2 when k is odd and nz = k/2 when k is even. 
To test Eq. (17) we evaluate the integral 

Y vW+v) 2F =- 
2aa5r(v+l) ’ 

(17) 

.--y’. 
? .2 > ( 18) 

This integral reduces to the integral (1) when we choose A = J+, and p = c + 1 - ,u. 
The parameter p has to be chosen so that k = v - p is an integer and preferably also 
,U 2 + to avoid the end-point singularities in Eq. (17). The results for several values 
of v, p, and y are given in Table IV. The Fourier integrals were again calculated by 
the NAG routine DOlANF and the integral (17) was computed using the routine 
DOlAHF with a requested relative accuracy of lo-“. The hypergeometric function 

TABLE IV 

Integral I, (18) Calculated with XMAX = 30 and a = 2 

1’ B * P Y Exact integral Absolute error 

1 0 0 0 1 0.23606798 -0.296 x 1O-8 
10 0.81980390 0.142 x 1O-5 

100 0.98019998 0.113 x 10-S 
10 0 0 1 1 0.53749050 x lo-’ -0.136 x lo-‘O 

100 0.81874167 x IO-’ -0.262 x 1O-6 
0.5 2.5 2 0.5 10 0.93311117x 10-j -0.158 x 1O-9 

100 0.31557004 x 10-e -0.333 x 10-E 
1.5 2.5 2 0.5 1 0.63830767 x IO-’ 0.237 x 1O-8 

100 0.15944926 x 10 -4 -0.672 x 10-l’ 
10.5 2.5 2 0.5 10 0.13132359 x 10-l -0.348 x IO-” 

100 0.27586445 x 10 -’ 0.203 x IO-“ 
1.25 1.75 2 1.25 10 0.17833078 x 10-l 0.565 x 1O-9 

100 0.37863949 x 10 -’ -0.161 x 1O-8 
0.75 2.25 2 0.75 10 0.18978529 x 10 -’ -0.270 x 1O-7 
4.75 2.25 2 0.75 1 0.15316299 x 10 -4 0.115 x 10-s 

100 0.20172978 x 10-I 0.841 x lo-* 

No&. The adaptive numerical integration routine DOlAHF is used with EPSREL = 10e4. 



BESSEL FUNCTION INTEGRALS 343 

?F, is computed using the algorithm R2Fl presented by Luke [25] for the rationai 
approximation of ?F,(a, b; c; -2). The accuracy of the results is seen to be at least 
6 decimal places in most cases and usually even more. 

5. CONCLUSIONS 

We have presented a new method for the computation of integrals of the form (2) 
or (3). The method can be generalized also for calculation of the general Bessel 
function integral (1) even if v is not an integer or an integer plus one-half. 

The adaptive integration procedure converged rather slowly when the argument 
3’ is large (especially in the case of the Bessel integral). The recurrence relation 
method of Clenshaw in the calculation of the Chebyshev coefficient (9) is faster but 
for larger values of the argument J also, this method requires computation of a 
rather larger number of points of the Fourier transform J’(t). It has, however, the 
advantage that all odd (or even) order transforms can be calculated simultaneously. 

If one wants to compute the integrals efficiently for many values of the argument 
J simultaneously it is probably better to construct an algorithm which employs 
FFT in computation of the Fourier transforms as well as of the Chebyshev coelz 
ficient, rather than using the present library routines 
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